The Crystal and Molecular Structure of (-)-3 β-Acetoxy-4 α-t-butylcarbamoyl-3 α-methyl- 7β-(p-bromophenyl)acetamidocepham 1α-Oxide, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{BrS}$

By M. L. Smart and D. Rogers*
(Chemical Crystallography Laboratory, Imperial College, London, S.W.7)

Summary The crystal structure of an oxidised rearrangement product from a penicillin sulphoxide has been determined.

The title compound is obtained as the major product from the oxidation of the corresponding acetoxy-cepham with sodium periodate. ${ }^{1}$ The crystal structure of this compound has been determined from three-dimensional X-ray diffraction data. Crystals were obtained from dichloromethane as colourless triangular plates, with the unit-cell data:$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{BrS}, M=542 \cdot 4$, space group $P 1$ (No. 1), a $=9 \cdot 123, b=12 \cdot 135, c=12.525 \AA, \alpha=93^{\circ} 49^{\prime}, \beta=93^{\circ}$ $52^{\prime}, \gamma=91^{\circ} 45^{\prime}, U=1380 \AA^{3}, Z=2, D_{\mathrm{m}}=1.30 \pm 0.01$ (flotation), $D_{\mathrm{c}}=1.30 \mathrm{~g} \mathrm{~cm}^{-3}$.

The space group must be $P 1$ in view of the observed optical activity of this compound. ${ }^{1}$

Using Ni-filtered $\mathrm{Cu}-K_{\alpha}$ radiation, 2207 independent data were measured to $\theta=45^{\circ}$, on a Siemens four-circle automatic diffractometer; 72 reflections were judged insignificant. The structure was solved by conventional heavy-atom techniques, and block-diagonal refinement has reached $R=0.092$ with refinement still continuing. The amount of data was limited by severe thermal attenuation, and since there are 2 molecules (66 atoms) in the asymmetric unit, the precision of the parameters is rather poor. The structure of one molecule is given schematically in
(I) and as a stereodiagram ${ }^{2}$ in the Figure. The molecules have an extended configuration, and pack side by side

approximately parallel to b, to give a roughly "cubeshaped" unit-cell. The two molecules are very similar structurally, and at this stage of refinement the only significant difference between them is a relative rotation of
the acetoxy-group by $c a .120^{\circ}$ about the $\mathrm{C}(3)-\mathrm{O}(10)$ single bond. The absolute configuration of the synthetic molecule has not yet been checked by X-ray fluorescence.
and makes angles of 32° and 27° with the mean planes through $\mathrm{C}(2), \mathrm{C}(3), \mathrm{N}(5), \mathrm{C}(6)$, in the two molecules. The independent molecules are linked together in pairs by an

Figure

The structure confirms that predicted from nuclear Overhauser and mechanistic evidence. ${ }^{1}$ The six-membered, sulphur-containing ring forms a well-defined chair, in contrast to cephalosporin $C,{ }^{3}$ where the presence of the 3 double bond confers a twist-boat conformation on this ring. The sulphoxide oxygen is α (equatorial), the 3 -acetoxygroup β (axial), the 3 -methyl group α (equatorial), and the 4 -t-butylamide group α (axial). The S-O bond lengths of 1.46 and $1.49 \AA$ are within experimental error of literature values. ${ }^{4}$

The β-lactam ring is planar within experimental error,

N-H $\cdot \cdots$ O hydrogen bond ($2.76 \AA$) between the amide nitrogen, $\mathrm{N}(23)$, and the oxygen, $\mathrm{O}(9)$, of the β-lactam ring. Weaker intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (2.92 and $2.93 \AA$) between the t-butylamide nitrogen, $N(17)$, and the sulphoxide oxygen, $\mathrm{O}(22)$, tend to link the molecules in infinite chains. These are, no doubt, influencing factors in the adoption of a crystal structure with two molecules in the unit-cell. In addition an intramolecular bond of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}(2.91 \AA)$ is suggested between $\mathrm{C}(2)$ and $O(12)$ in one of the molecules.
(Received, June 18th, 1970; Com. 948.)
${ }^{1}$ D. H. R. Barton, F. Comer, D. G. T. Greig, G. Lucente, P. G. Sammes, and W. G. E. Underwood, preceding communication. ${ }^{2}$ ORTEP, C. K. Johnson, Publication ORNL 3794, 1965.
${ }^{3}$ D. C. Hodgkin and E. N. Maslen, Biochem. J., 1961, 79, 393.
${ }^{4}$ R. Hine, Acta Cryst., 1962, 15, 635; A. M. O'Connell and E. N. Maslen, ibid., 1967, 22, 134.

